西安光机所集成光学芯片研究获进展,可用于传感器等领域
2017-08-03 22:00:16   来源:微迷   评论:0   点击:

& 8203;作为现代光学尤其是集成光学核心部分,高质量脉冲与相干激光光源一直以来都是学术界与产业界的重要关注点。在中国科学院B类战略性先导科技专项“大规模光子集成芯片”支持下,中科院西安光机所微纳光学与光子集成团队近期在片上集成光源方面取得系列研究进展。

​作为现代光学尤其是集成光学核心部分,高质量脉冲与相干激光光源一直以来都是学术界与产业界的重要关注点。在中国科学院B类战略性先导科技专项“大规模光子集成芯片”支持下,中科院西安光学精密机械研究所微纳光学与光子集成团队近期在片上集成光源方面取得系列研究进展。

​首先,在片上实现了以49GHz为基频的多倍频(1~15)稳定激光脉冲源,该研究成果于7月19日发表在SCI期刊ACSPhotonics上。通过设计不同激光器参数,利用激光腔内光场增益、非线性和色散的相互作用,产生的各类脉冲激光源已经在学术和商业领域中取得丰硕的成果。不过,超高速光学时钟、高速光通信技术、微波光子学、光谱测量及天文光频梳等领域对激光脉冲源的重频提出了更高的需求。西安光机所利用自主研制的片上微环谐振腔,基于耗散四波混频效应,实现了基频为49GHz的稳定激光脉冲输出,相比于超短腔脉冲激光器,有效降低了由Schawlow and Townes限制带来的高相位噪声。同时利用片上激光模式选择机制,实现了49~735GHz的多倍速率的激光脉冲,突破了激光腔自由光谱范围对重复频率的限制。

​其次,在傅里叶变换极限超窄谱片上锁模激光技术方面取得重要突破。传统锁模技术常被用来实现超短脉冲,研究者更多地将锁模技术用于展宽频谱带宽以实现超短、亚皮秒级甚至阿秒级的激光脉冲,而傅里叶变换极限超窄谱片上纳秒脉冲的锁模激光器较难实现,这种激光器因其频谱带宽比较窄,可以被广泛应用于光谱学测量、传感器、相干光通信以及量子光学等领域。西安光机所和国外多家单位合作,利用非线性放大环路反射镜实现了超窄谱的集成被动式锁模激光器,其中核心的环路反射镜采用研究所特有的低损耗高折射率差高Q值微环谐振器。该激光器输出的激光脉冲时域半高全宽(FWHM)为4.31ns,平均输出光功率约为2.5mW,峰值功率可达约60mW,输出振幅RMS<2.3%,谱宽104.9MHz,相比传统降低2个数量级。该研究成果2017年发表于《自然-光子学》(NaturePhotonics)期刊上。

​以上研究成果是西安光机所微纳光学与光子集成团队继交叉偏振光子对产生、片上多光子纠缠态产生、可见光光学频率梳实现以及高维度光量子芯片等成果之后的系列突破性进展,为未来光量子集成芯片的发展奠定了重要基础。

​延伸阅读:

​《光学传感市场-2017版》

《数据中心及其它应用领域的硅光子器件及市场趋势-2016版》

​《硅光子市场-2016版》

​《量子级联激光器市场-2017版》

相关热词搜索:传感器 光学芯片

上一篇:关于XYZ色彩感测的11个迷思
下一篇:MicroVision出样首批3D ToF交互式显示引擎开发套件